3 Reasons to Flush Medical Instruments Before Using an Ultrasonic Cleaner

One of the most important phases of medical device reprocessing is the manual cleaning. Improperly cleaned surgical instruments are much more likely to contribute to healthcare-associated infections (HAIs) if bioburden is not completely removed prior to the sterilization process. There are many options for cleaning such devices, including ultrasonic cleaners. But can ultrasonics perform an ideal cleaning on their own?

 

Ultrasonic cleaners can be especially effective at cleaning difficult-to-clean medical device instruments, and their hard-to-reach areas such as joints, crevices, and box locks. While their cleaning abilities may be useful, they do not perform the crucial first steps needed for proper manual cleaning. Those include flushing and brushing.

 

Here are three important reasons to properly flush and brush instruments prior to use of an ultrasonic cleaner.

 

1. Ultrasonics do not replace manual cleaning

 

Manual cleaning is a key step in the overall cleaning process. But ultrasonic cleaners on their own were not intended to remove all bioburden from devices.

 

IAHCSMM recommends manual cleaning in conjunction with sonic cleaning (if the department is using an ultrasonic cleaning device). Doing so can “enhance the cleaning process and increase the bactericidal effectiveness of the disinfection and sterilization processes.”1

 

It may seem easy enough to brush devices thoroughly and then use the ultrasonic cleaner. Unfortunately, that doesn’t work.  Brushing alone before ultrasonic cleaning is not enough. While brushes introduce friction into the manual cleaning process, they do not introduce

cleaning chemistries into channels effectively, and do not rinse out residual bioburden. Flushing and brushing may be required cleaning activities prior to your ultrasonic cleaning process per device IFU.

 

2. Irrigating channels benefits from a flush before ultrasonic cleaning

 

As mentioned above, combining the manual cleaning efforts of flushing and brushing with an ultrasonic cleaner can enhance the sterilization process. That enhanced sterilization process occurs when the dual cleaning efforts maximize effective removal of bioburden from difficult-to-clean devices. IAHCSMM recommends all lumens be carefully brushed and flushed prior to sonic cleaning.1

 

Following recommended device IFUs guidelines for flushing prior to sonic cleaning includes the use of proper time, volume, and pressure requirements. Pre-cleaning (or pre-conditioning) using proper flushing can also save time with independent flushing systems such as the FlexiPump, which can flush up to three devices at once and does not require a technician to monitor the PSI.

 

3. Ultrasonic cleaner IFUs require manual removal of bioburden

 

Manual cleaning to remove gross debris prior to ultrasonic cleaning is also recommended in the IFU of ultrasonic cleaners on the market. That is because ultrasonics were not meant to replace the manual cleaning effectiveness of flushing and brushing. The CDC reports, “Failure to adequately clean instruments results in higher bioburden, protein load, and salt concentration. These will decrease sterilization efficacy.”2

 

Ultimately cleaning goals should include:3

  • Removal of visible debris
  • Removal of invisible soilage
  • Elimination of as many microorganisms as possible

 

Proper flushing prior to ultrasonic cleaning can achieve those goals. Removal of overt residue makes ultrasonic cleaning more effective, which is why sonic cleaner IFUs require it.

 

Flushing during manual cleaning meets IFUs, cleans more effectively, and lowers infection risk

 

Ultrasonic cleaners can be an important tool when it comes to effective device and instrument cleaning. Yet it is important to remember their cleaning capabilities alone are not enough to remove all bioburden.

 

Flushing your devices first meets ultrasonic cleaner IFU, as well as device IFU. Proper flushing also makes your ultrasonic work more effectively, which ultimately contributes to lowered HAI risks to patients.

 

Those are all beneficial impacts of flushing prior to using your ultrasonic cleaner.

 

How do you perform manual cleaning tasks before using an ultrasonic cleaner? Tell us in the comments below!

 

Learn more about the Pure Processing FlexiPump Independent Flushing System and how it can support effective cleaning in conjunction with ultrasonic cleaning devices.

 

References

  1. Griffin, Ava and Concu, Patti (2017). Basics of ultrasonic cleaning. IAHCSMM CRST Self-Study Lesson Plan. Retrieved May 30, 2021 from the www.iahcsmm.org website. https://www.iahcsmm.org/images/Lesson_Plans/CRCST/CRCST153.pdf
  2. Centers for Disease Control and Infection (2016). Infection control. Guideline for Disinfection and Sterilization in Healthcare Facilities. Retrieved May 30, 2021 from the CDC website. https://www.cdc.gov/infectioncontrol/guidelines/disinfection/tables/table10.html
  3. Pennsylvania Patient Safety Authority (2006). Patient safety advisory: Bioburden on surgical instruments. National Library of Medicine website. https://collections.nlm.nih.gov/master/borndig/101727488/200603_20.pdf

Two Reasons Following IFUs is a Necessity

Reusable medical devices can present a host of opportunities for hospital acquired infections (HAIs) or surgical site infections (SSIs). One critical area in which the risk for HAIs and SSIs must be reduced involves following manufacturers’ instructions for use (IFU) during the decontamination and sterilization processes.

 

The complexity of instruments that central sterile processing departments are charged with cleaning, is changing and evolving. From laparoscopic instruments with small hinges and lumens to rigid and flexible scopes with delicate channels, these instruments require specific steps to ensure that they are properly cleaned and sterilized. Without doing so, the risk to patient and staff safety increases exponentially.

 

flushing roboticsIFUs are “written recommendations provided by the manufacturer that provide instructions for operation and safe and effective use of its device. …The device manufacturer is responsible for ensuring that the device can be effectively cleaned and sterilized with the means and methods available in health care facilities. Sterilization validation of a device requires microbiological, engineering, toxicological, and sometimes clinical evaluations of the device, which are beyond the abilities of most health care facilities. To ensure patient safety, a reusable device needs to be capable of being thoroughly cleaned and sterilized. The device labeling describes specific methods of cleaning and sterilization that have been validated by the manufacturer.”[1]

 

Throughout the decontamination and sterilization process, ANSI/AAMI ST79: 2017 Comprehensive guide to steam sterilization and sterility assurance in health care facilities, requires that departments ensure effective decontamination and sterilization by following the device manufacturer’s written IFU.  To do so, IFUs should be easily accessible, reviewable, and followed. If no IFU exists for a device, instrument, equipment, or solution, the manufacturer should be contacted and a documented method of cleaning should be provided.

 

flushing ocular instrumentsIFUs address several areas of concern. Many instruments or devices have numerous parts that must be disassembled for proper reprocessing. Understanding how those intricate parts work, the design elements, and possibly overlooked areas for cleaning, are essential to ensuring that a device is sterilized. Cleaning solution IFUs are another area that need to be taken into consideration. Proper dilution, concentration, temperature and contact time are vital for ensuring proper decontamination and sterilization. Additionally, some instruments and devices cannot be treated with specific solutions. Following manufacturers’ IFU will help prevent unnecessary damage the instrument. IFUs for reprocessing equipment are equally important. Without proper knowledge of the tools used to reprocess the instruments, effective reprocessing cannot be achieved.

 

While instrument damage and inventory protection is important, there are only two reasons why manufacturers’ IFU must be made available and followed:

 

  1. Patients: “IFU compliance is a must because we impact patients’ lives when the instruments used are contaminated. Patients come into the surgical suite with a medical problem that can be made better with surgery; the instruments used on that case must be processed following the IFU all in the name of patient safety.”[2]
  2. Staff: Your staff is your most valuable asset. Simply put, without central sterile processing staff, reusable medical devices would not get reprocessed. The risk of injury from equipment and instruments as well as exposure to harmful chemicals can be reduced by following IFUs. Departments cannot afford to lose their most valuable assets to often avoidable injuries.

 

Many tools exist for helping central sterile processing departments to ensure IFUs are followed. From digital databases that can be accessed through a computer at a workstation, to available hard copies of IFUs, departments must make sure IFUs are accessible to all staff. Training and in-servicing help to ensure that IFUs are followed, patient safety is not compromised, and that staff are able to safely perform their tasks.

[1] ANSI/AAMI ST79:2017, Definitions and Abbreviations

[2] https://www.infectioncontroltoday.com/view/importance-following-manufacturers-ifus

5 ways healthcare reprocessing sinks improve workflow and productivity

How healthcare reprocessing sinks are a better option than commercial stainless steel sinks

reprocessing sink blogIn central sterile processing departments, the decontamination area’s reprocessing sinks represent the most critical area in ensuring that instruments are being properly cleaned. While commercial stainless steel sinks are commonly used for reprocessing medical instruments, not all sinks are created equally.

Manual cleaning and disinfection of instruments requires that sinks have either two- or three-basin sections1 to soak, rinse and provide a final rinse with critical water. The American National Standards Institute (ANSI) and Association for the Advancement of Medical Instrument (AAMI) standard ST79:2017 also recommends that sinks have “attached solid counters or adjacent work surfaces on which to place soiled and clean items separately.”

To make the most of the space available in the limited confines of the decontamination area, sinks need to also serve as a workstation. Unlike commercial stainless steel sinks, healthcare reprocessing sinks are designed with the decontamination tasks and users in mind. As such, ergonomics and workflow standards and recommendations are met.

 

5 ways healthcare reprocessing sinks improve productivity and quality

  1. Ergonomics
    Height-adjustable healthcare reprocessing sinks meet Occupational Safety and Health Act (OSHA)2 compliance and reduce musculoskeletal disorders. Central sterile processing personnel heights and physical capabilities vary, making height adjustability a necessity to perform duties optimally. Height-adjustability also comes in varying options. While the overall sink can be height-adjustable, having an attached pegboard or shelf under the sink that moves with the sink, also helps alleviate staff pain from bending and reaching by keeping tools within easy reach.
  2. Protection from aerosolization
    While personal protective equipment (PPE) is a necessity, sinks can also provide another way to ensure the reduction of aerosolization. Aerosols can make contact with personnel from any direction and can transfer microorganisms to personnel. The incorporation of a sink basin splash guard allows for personnel to be able to manually clean instruments without being exposed to dangerous organisms.
  3. Workflow
    Incorporating tools that ensure proper workflow allows healthcare reprocessing sinks to become a training tool. Workflow plates that indicate whether a particular basin is to be used for soaking, rinsing, or a final critical water rinse can be used as a training tool to educate new hires. It also serves as a reminder to veteran personnel when redundant, repetitive tasks can lead to overlook protocols. Workflow plates are also removable for easy cleaning.
  4. Lighting
    ANSI/AAMIST:79 requires adequate lighting of work surfaces.” Ancillary lighting should be considered for areas where instruments are manually cleaned and inspected.” Task lights with magnifying lenses allow personnel to be able to visually verify the cleaning process. Magnifying task lights can be installed on a pegboard with an adjustable arm that meets the ergonomic needs of each staff member for less eye strain and greater inspection capabilities.
  5. Instrument protection
    Tools such as staging panels and sink liners protect the tips of delicate, expensive instruments when more space is needed. By adding a staging panel to an existing sink basin, the sink’s built in counter space is expanded to help stage instruments prior to sterilization. Sink liners in basins and on sink countertops provide a soft-landing area to prevent damage to instruments while they are staged.

 

 

Learn more about Pure Processing healthcare reprocessing sinks, which feature moveable pegboard and shelving accessories to meet your workflow and workplace environment goals.

Looking for more sterile processing articles? Read Central Sterile Processing Education and Training Are Key to Reducing HAIs.

 

References:

  1. United States Department of Labor. Central supply. Occupational Safety and Health Administration.. https://www.osha.gov/SLTC/etools/hospital/central/central.html
  2. Association for the Advancement of Medical Instrumentation (2017). ANSI/AAMI ST79:2017, Comprehensive guide to steam sterilization and sterility assurance in healthcare facilities.

 

 

 

 

 

Eliminate the Negative Decontamination Stigma

Decontam pic Learn to Love the Decontamination Area of Your Sterile Processing Department

When it comes to medical device reprocessing, the most critical tasks happen in the decontamination area of sterile processing departments. Proper pre-cleaning is the foundational step to patient care. So why do negative stigmas surrounding the decontamination area of sterile processing departments continue to be an issue?

3 Issues that Cause Poor Stigma Regarding Decontamination

  1. Space and equipment issues
    Sterile processing departments are not always outfitted with the right equipment or infrastructure needed to perform the responsibilities that have been assigned. Sterile processing departments may need a three-bay sink and will often have two bays in which to work. As a result, the responsibility falls to the technician to make the equipment achieve both compliance and performance. In departments where space is limited, this becomes a bigger challenge. Poor equipment and departmental limitations can immediately cause the decontamination area to become a place of frustration.
  2. Pain and discomfort
    The decontamination area is a dangerous place to work. Ergonomic hazards to technicians are ripe with injuries from sharps and the body becomes physically tasked when repeatedly lifting trays and bending over sink basins cleaning instruments. Additionally, the decontamination area is hot and sweaty. Add the layers of personal protective equipment (PPE) equipment required to work in the decontamination area and it becomes even more hot and sweaty. Over time, the conditions can put a physical strain on technicians and put them at risk for injury. As a result, it becomes hard to enjoy working in an area that causes pain and discomfort.
  3. Utilizing decontamination as a punishment
    Scheduling can become a major root of poor stigmas in the decontamination area. Managers tend to continue to schedule the same people to work in the decontamination area. Consequently, the long shifts are staffed by the same technicians. Departments that implement frequent rotations of personnel may see improvements in negative attitudes. Additionally, due to the negative perception of working in decontamination, managers will also threaten to punish employees by sending them to work in decontamination. When technicians are overworked and underappreciated in the decontamination area, employee dissatisfaction becomes an issue.

Removing the negative stigma surrounding working in the decontamination area

Removing the stigmas surrounding working in the decontamination area begin with the central sterile processing department leadership. Technicians need to understand and believe that there is no task that is too small when it comes to performing the important work in decontamination. Every channel, every instrument set, every tip is a valuable tool in delivering safe patient outcomes. Technicians, managers, and supervisors are the gatekeepers of patient and staff safety and are responsible for ensuring that each item that comes through the sterile processing department is clean. Remember, every member of the team is vitally important in this process.

Recognizing the demanding work that staff perform in the decontamination area is another step toward eliminating the negative stigmas. When technicians take time and perform their duties meticulously and end their shift with all case carts completed, managers and supervisors should recognize those achievements. Sterile processing professionals can never hear “thank you,” or “good job,” enough.

Sterile processing departments should not underestimate that the element of fear could also be the result of negative perceptions when it comes to working decontamination. If you have never worked in sterile processing, and a technician’s first introduction to the sterile processing department begins in decontamination, the area can seem intimidating. Manufacturer instructions for use (IFU) are quite rigorous with no wiggle room for mistakes. For example, technicians must follow the IFU or suffer the risk to patient and staff safety. Decontamination is a dangerous environment, and proper training for technicians to feel comfortable working in decontamination necessary for successful patient outcomes.

3 tools to help shift negative sterile processing department decontamination perceptions to generate positive results

  1. Identify sterile processing vendors that are actively involved in producing tools for the decontamination space.
    Vendors may provide equipment for decontamination, but if they are not actively engaged in improving that space, they cannot be a long-term partner for addressing the issues you find in decontamination.If departments do not have enough funds allocated in the budget for new sinks, consider sink inserts, which can raise the working level and make your deep sink basins much more manageable. Departments can also consider ergonomic improvements such as anti-fatigue mats. These small tweaks make a difference for the working conditions in decontamination and lead to better staff engagement and satisfaction.
  2. Mobilize and empower sterile processing teams by sharing the responsibility of auditing and improving the decontamination department processes.
    Personnel can help guide departments to implement the best, long-term fixes for their department. By seeking staff input, department leaders can create a collaborative environment in which to celebrate working in decontamination. Department leaders who consistently communicate and educate regarding the importance of decontamination, immediately create a more welcoming atmosphere. Education is a critical pillar to building a solid decontamination area. Sterile processing departments can experience great benefits from partnering with local IAHCSMM chapters and exchanging ideas and information. When departments sponsor decontamination-related education, it sends a signal that the decontamination area is important.
  3. Find a decontam champion!
    CS Pic for BlogIn sterile processing departments where negative resentments around decontamination persist, your champion, when mobilized, will help others learn to love decontamination. Involving the decontamination champion can help departments when evaluating new product improvements. Decontam champions can also create great partnerships with educators when performing decontamination in-service training. If staff see decontamination as a dead-end, it will begin to affect the entire team. However, if departments can provide routes to improve staff mentalities with a champion program, sterile processing department leadership demonstrates that personnel talents, knowledge, skills, and abilities are recognized. A champion can be a powerful thing.

Stigmas surrounding the decontamination area can always end with sterile processing leadership personnel. If you love decontamination, then your team will learn to love it as well. You can never overcommunicate the significance that decontamination holds in the sterile processing department.

For a more in-depth discussion regarding the negative stigmas surrounding the decontamination areas of sterile processing and to earn .05 CE credits, listen to IAHCSMM’s Process This podcast. Pure Processing’s business operations manager, Megan Pietura, addresses more solutions creating a positive atmosphere in the decontamination department.

 

 

“>

Solutions for easily boosting capacity in backlogged sterile processing departments

backlogged departmentIt is a scene that is all too familiar in sterile processing departments: case carts pilling up in decontamination, while scheduled surgeries are delayed or postponed due to backlogs in reprocessing. Those backlogs are often created by bottlenecks that can easily be adjusted or eliminated with a few uncomplicated solutions.

 

Sterile processing backlog area 1: Soaking

The most common sterile processing bottlenecks occur during the soaking and precleaning processes.

Soaking and precleaning is critical for patient safety. ANSI/AAMI ST79: 2017, 7.5.1 states “presoaking instruments moistens and loosens the soil, thus making the cleaning step more effective and efficient.”1 Additionally, device instructions for use (IFU), such as robotics, can require soak times of up to 30 minutes. Flexible and rigid scopes can be even more demanding when delayed reprocessing occurs, requiring a minimum of one hour of soaking, and up to ten hours for some gastrointestinal scopes.²

Many reprocessing departments do not have enough sink basins to dedicate tor instruments with extended soak times. Additionally, many sink basins are not wide enough to accommodate soaking larger instruments or trays, leading to more reprocessing delays.

Robotic instruments and scopes are inherently difficult to clean. Properly soaking the instrument loosens and removes gross bioburden to make the cleaning and rinsing process more effective. If proper protocols are not followed during the precleaning process, that can add additional delays to an already bottlenecked process. So how do departments prioritize basin space and while meeting standards and guidelines?

Options to accommodate medical device soaking requirements

4 tier cart blogMobile carts are a quick fix for departments that do not have extra space or resources for a renovation. Departments can create a dedicated soaking space during peak processing times by incorporating a sink insert into a mobile cart or integrating a mobile sink basin. Sink inserts and mobile carts are available in a variety of sizes to accommodate robotics, rigid and flexible scopes, as well as separate areas for ocular instrument reprocessing.

Mobile carts are available in multi-tier options so that departments can soak multiple sets of instruments at once within a small footprint. The mobility of the carts also makes it easy to store the cart and sink inserts when not in use or utilize it for vertical storage options as a place to store soaking containers when not in use.

 

Sterile processing backlog area 2: Flushing

Properly flushing instruments during the precleaning process can create backlogs when volume of lumened instruments and processes for flushing are considered.

Lumens must be flushed with highly efficient practices, so time-saving measures can be difficult to implement without the expense of quality. Contact, friction, and fluidics are necessary to properly remove bioburden from lumened instruments and scopes.

  • Specific contact times are required by detergent IFUs to effectively dissolve and loosen bioburden deposits such as blood, fat, and tissue
  • Friction, by brushing or flushing, facilitates the separation of bioburden from its points of attachment on internal device surfaces
  • Often, brushing or flushing alone does not remove hard, stuck-on bioburden. By integrating fluidics, or a high volume of fluid under pressure, those volumes ensure that detergents and residues are completely flushed from interior channels and lumens

Traditional tools to flush lumened devices such as syringes and spray guns may be a simple, cost-effective option. However, cost-effectiveness should be balanced with efficiency and effectiveness.

Syringes may be a simple, traditional solution. But pulling liquid and plunging it into each instrument for a specified number of times is a time-consuming process. And no two technicians’ flush instruments in the same way, every time. That can lead to practice discrepancies from shift to shift.

Similar to syringes, spray guns cannot clean more than one channel at a time, and require technicians to use both hands, which decreases the ability for technicians to multi-task.

Alternatives to flushing with syringes and spray guns

Flushing robotics blog 4Automated flushing systems effectively address the issue of throughput by enabling simultaneous flushing for multiple channeled items or ports with much less connection or disconnection time. One automated system can allow technicians to flush up to 5 items at a time. Output can be doubled or even tripled multiple systems are installed at sinks.

By automating the flushing process, departments can also ensure that devices are consistently flushing at the proper volumes per instrument IFU and ANSI/AAMI ST79:2017 flushing and rinsing standards. Automated systems provide options for flushing for specific amounts of time at specific volumes so that contact time IFUs are met. Additionally, treated and untreated water and cleaning solutions can be integrated into the system to aid in loosening bioburden and assuring pre-cleaning protocols are met.

Automated systems are adaptable to a wide variety of instruments:

  • Orthopedic
  • Endoscopic
  • Robotic
  • Ocular
  • Laparoscopic devices
  • Suction tips
  • And more

These flushing systems ensure automated, consistent flushing for your full channeled instrument inventory.

 

Reducing reprocessing bottlenecks NOW

When departments are already challenged with time constraints, fast, affordable solutions are the easiest way to increase capacity. Large-scale renovations are not always necessary. Instead, simple tools such as mobile carts, sink inserts, and automated flushing systems can be easily installed and implemented to alleviate backlogs and reduce processing times. More care can be taken to deliver safer outcomes for staff, instruments, and patients when departments do not feel rushed to provide case carts quickly.

Explore mobile cart, sink insert, and automated flushing system options to increase your sterile processing capacity!

 

Learn more about reducing backlog stressors and earn free CEUs. Visit our educational program, Finding Your Happy Medium for more details. Follow us on Facebook and LinkedIn for #LearnMoreMonday educational content.

 

Looking for more blog topics like this? Read 3 Ways Height Adjustable Sinks and Tables Improve Sterile Processing Workflow

 

References:

  1. ANSI/AAMI ST79:2017 – Comprehensive guide to steam sterilization and sterility assurance in health care facilities. webstore.ansi.org. Accessed November 17, 2020. https://webstore.ansi.org/Standards/AAMI/ANSIAAMIST792017?gclid=Cj0KCQiAhs79BRD0ARIsAC6XpaWiXjfqTZozgNVWCjY53KHU_bD9gvHr7wsoeypRrbhjCxnrk7kqeR0aAnVkEALw_wcB
  2. Benedict M. Delays in Endoscope Reprocessing … and the Biofilms Within. Accessed November 18, 2020. https://medical.olympusamerica.com/sites/default/files/us/files/pdf/Whitepaper—Delays-in-Endoscope-Reprocessing-FINAL-APPROVED-single-page-version.pdf